Mosaicism
Effect Of X Inactivation On Human Disease
Females with a mutated gene on an X chromosome have two populations of cells. One group produces the intact protein, and the other produces a protein that is affected by the mutation. Like tortoiseshell cats, these females are mosaic. Health sometimes depends on what fraction of the cells in a tissue express the functional gene.
For reasons that are not yet well understood, some females exhibit non-random inactivation patterns. If the chromosome with the normal copy of a gene is inactivated in most of the cells in a female's body, and if the normal protein is vital for some function, the female is likely to develop a disease.
With some X-linked diseases, cells that contain a mutation on the active X chromosome proliferate less during development than cells that carry themutation on the inactive X chromosome. In such cases, the female primarily expresses the normal gene.
Unlike females, males with an X-linked mutation will usually show signs of the disease, because they have no second functional copy. (Females will usually show symptoms if they inherit a mutated copy of the gene from each parent.) Males therefore inherit X-linked diseases, such as Duchenne muscular dystrophy, hemophilia, or colorblindness, much more commonly than females. Some X-linked disorders are almost never found in males, which may seem paradoxical until we consider that the absence of a functional gene can be so harmful that most males who inherit the disease die before being born.
Such is the case with Rett syndrome, an X-linked, dominant neurological disorder. This disorder is due to a mutation in a gene called MECP2. The disorder is primarily found in females, whose mosaicism gives them partial protection from its effects. Only a handful of males with Rett syndrome are known.
Additional topics
Medicine EncyclopediaGenetics in Medicine - Part 3Mosaicism - The Sex Chromosomes, Mosaic Expression, X Chromosome Inactivation, Effect Of X Inactivation On Human Disease