2 minute read

Computational Biologist

A computational biologist is a scientist who develops and utilizes computational tools to analyze biological data. The Human Genome Project and other large sequencing projects have generated an extraordinary amount of data. Biologists are now faced with the challenge of extracting meaning from linear sequences composed of billions of base pairs. The work of computational biologists is indispensable for this task and for many other biological problems that lend themselves to computational solutions.

A basic knowledge of molecular biology and genetics is important, enabling the computational biologist to understand the issues, to interpret the meaning of results, and to communicate with research biologists who work at the laboratory bench. The actual job duties, apart from proficiency in oral and written communication and reading the literature, are very much centered around working with computers. It is, therefore, paramount that a computational biologist be highly skilled in computer technology, with expertise in hardware, software, and the principles of programming. Daily tasks range from accessing public databases and using publicly available and commercial tools for analysis, to developing novel methods for solving problems.

Until recently, there were no formal educational opportunities in computational biology at the graduate level. Therefore, most of the current practitioners and authorities in the field have a combination of degrees at the graduate (master's or doctorate) and undergraduate (baccalaureate) levels in computer science and biology. Still others hold degrees in one of the two fields and are self-taught in the discipline for which they lack formal training. Most often such individuals will have an advanced degree in computer science and will be self-taught in biology, although the converse can also be true. Nonetheless, the ability to program in a high-level language such as C++ or PERL is a major qualification.

With the release of the working draft of the human genome in 2001, computational biology has come of age. Highly qualified individuals are in demand at academic, private, and government research institutes alike. Academic institutions have taken notice and have begun implementing certificate and graduate programs in computational biology and bioinformatics. Many more programs are in the planning stages. Thus, it will probably be desirable for future practitioners to take advantage of these specialized formal training initiatives if they wish to remain competitive.

Working environments can be fairly diverse, but be it in an office, a cubicle, a computer lab, or a corner in a wet lab, it invariably will consist of a desk and a secure networked UNIX workstation. Depending on the structure of the organization, one may work as part of a team or independently. It is common to have frequent contact with both biologists and programmers. The computational biologist often acts as a liaison between the two. Job opportunities range from entry level to team leader to project manager or principle investigator.

Helping biologists extract meaning from their findings is extremely rewarding. Interesting findings should be published to help research move forward. As with most scientific fields, a computational biologist enjoys the opportunity to travel to international meetings. The salary ranges from approximately $45,000 to approximately $150,000, depending on experience and educational attainment, and on whether one chooses to work in the public or private sector.

Judith E. Stenger


Gibas, Cynthia, Per Jambeck, and James M. Fenton. Developing Bioinformatics Computer Skills. Sebastopol, CA: Oreilly & Associates, 2001.

Setubal, Joao C., and Joao Meidanis. Introduction to Computational Molecular Biology. Monterey, CA: Brooks/Cole Publishing, 1997.

Waterman, Michael S. Introduction to Computational Biology: Maps, Sequences, and Genomes. Boca Raton, FL: Chapman & Hall/CRC Press, 1995.

Additional topics

Medicine EncyclopediaGenetics in Medicine - Part 1