1 minute read

Cloning Genes

"gene Cloning" Usually Means "gene Identification"

When researchers report in a scientific journal that they have "cloned a gene" they are not referring to the rather mundane process of amplifying copies of a DNA molecule. What they are really talking about is the molecular identification of a previously unknown gene, and determination of its precise position on a chromosome. There are many different methods that can be used to identify a gene. Two of the most common approaches are discussed below.

A gene can be defined in several ways. In fact, the concept of the gene is undergoing a re-evaluation as scientists are analyzing the complete genomes of more and more organisms and finding that many sequences encode more than one protein product. Gregor Mendel identified genes—for example, he identified the factor that made peas either yellow or green—long before he or anyone else knew that genes were encoded on segments of the DNA that made up chromosomes. Studying genetics in the fruit fly, Drosophila melanogaster, Morgan and Sturtevant demonstrated that genes are entities that reside at measurable locations, or loci, on chromosomes, although they did not yet understand the biochemical nature of genes.

Modern geneticists often use the same methods as Mendel and Morgan to identify genes by physical traits, or phenotypes, that mutations in them can cause in an organism. But today we can go even further. Using a broad range of molecular biology techniques, including gene cloning, researchers can now determine the precise DNA coding sequence that corresponds to a particular phenotype. This capability is tremendously powerful, because discovering the gene responsible for a trait can help humankind understand the cellular and biochemical processes underlying the trait. For example, geneticists have learned a great deal about the basis of cancer by identifying genes that, when mutated, contribute to cancer. By studying these genes, researchers now know that many of them control when cells divide (e.g., proto-oncogenes and tumor suppressor genes) or when they die (e.g., the apoptosis genes). Under some circumstances, when such genes are damaged by mutation, cells divide when they shouldn't, or don't die when they should, leading to cancer.

Additional topics

Medicine EncyclopediaGenetics in Medicine - Part 1Cloning Genes - Purposes Of Gene Cloning, Cloning Techniques, Importance For Medicine And Industry, Genomic Versus Cdna Clones