1 minute read

Y Chromosome

Paternal Inheritance



The X and Y chromosomes are the sex chromosomes for mammals, including humans. Not only are the X and Y sex chromosomes in mammals physically distinctive, with the Y being smaller, the Y chromosome is exceptionally peculiar. The X chromosome contains considerably more genes than the Y, which has its functionality essentially limited to traits associated with being male. It is the Y chromosome that carries the major masculinity-determining gene (SRY, for sex-determining region Y), which dictates maleness. In a mating pair, if the paternal partner contributes a normal Y chromosome, male gonadal tissues (testes) develop in the offspring. Only males have the potential to transmit a Y chromosome to the next generation, and thus the father's contribution is decisive regarding an offspring's sex.



Since normally only one Y chromosome exists per cell, no pairing between X and Y occurs at meiosis, except at small regions. Normally, no crossing over occurs. Therefore, except for rare mutations that may occur during spermatogenesis, a son will inherit an identical copy of his father's Y chromosome, and this copy is also essentially identical to the Y chromosomes carried by all his paternal forefathers, across the generations. This is in contrast to the rest of his chromosomal heritage, which will be a unique mosaic of contributions from multiple ancestors created by the reshuffling process of recombination.

Additional topics

Medicine EncyclopediaGenetics in Medicine - Part 4Y Chromosome - Paternal Inheritance, Sex Chromosome Evolution And Peculiarities, Molecular Anthropology Using The Y Chromosome - Sex Determination and Y Chromosome Genes