2 minute read

Ribosome

Ribosome Function



Translation of messenger RNA (mRNA) by ribosomes occurs in the cytoplasm. In bacterial cells, ribosomes are scattered throughout the cytoplasm. In eukaryotic cells, they can be found both as free ribosomes and as bound ribosomes, their location depending on the function of the cell. Free ribosomes are found in the cytosol, which is the fluid portion of the cytoplasm, and are responsible for manufacturing proteins that will function as soluble proteins within the cytoplasm or form structural elements, including the cytoskeleton, that are found within the cytosol.



Bound ribosomes are attached to the outside of a membranous network called the endoplasmic reticulum to form what is termed the "rough" endoplasmic reticulum. Proteins made by bound ribosomes are intended to be incorporated into membranes, or packaged for storage, or exported outside of the cell. Ribosomes exist either as a single ribosome (that is, one ribosome translating an mRNA) or as polysomes (two or more ribosomes sequentially translating the same mRNA in order to make multiple copies of the same protein).

Ribosomes have the critical role of mediating the transfer of genetic information from DNA to protein. Ribosomes translate this code using an intermediary, the messenger RNA, which is a copy of the DNA that can be interpreted by ribosomes. To begin translation, the small subunit first identifies, with the help of other protein factors, the precise point in the RNA sequence where it should begin linking amino acids, the building blocks of protein. The small subunit, once bound to the mRNA, is then joined by the large subunit and translation begins. The amino acid chain continues to grow until the ribosome reaches a signal that instructs it to stop.

Many of the antibiotics used in humans and other animals to treat bacterial infections specifically inhibit ribosome activity in the disease-causing bacteria, without affecting ribosome function in the host-animal's cells. These antibiotics work by binding to a protein or RNA target in the bacterial ribosome and inhibiting translation. In recent years, the misuse of antibiotics has resulted in the natural selection of bacteria that are resistant to many of these antibiotics, either because they have mutations in the antibiotic's target in the ribosome or because they have acquired a mechanism for excluding or inactivating the antibiotic.

Janice Zengel

Bibliography

Frank, Joachim. "How the Ribosome Works." American Scientist 86 (1998): 428-439

Garrett, Robert A., et al, eds. The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions. Washington, DC: ASM Press, 2000

Karp, Gerald. Cell and Molecular Biology: Concepts and Experiments, 3rd ed. New York: John Wiley & Sons, 2002.

Additional topics

Medicine EncyclopediaGenetics in Medicine - Part 4Ribosome - Structure, Synthesis, Ribosome Function