Fertilization
Ovulation And Ejaculation
Sperm and egg cells are not only different from other cells, but are different from each other. A female is born with all the eggs she will ever have. At birth, the chromosomes of these eggs have only completed the beginning of meiosis (meiosis I) and will remain dormant (inactive) until the onset of menstrual cycles in puberty. Specific hormones produced during the menstrual cycle around day thirteen or fourteen trigger the continuation of meiosis in one egg each month. Meiosis is suspended for the second time in the middle of meiosis II around three hours prior to ovulation, and does not resume unless fertilization occurs.
During ovulation this egg, enclosed in two layers of protective material, is released from the ovary. The outer layer, the cumulus oophorus, is comprised of cells called cumulus cells, and the inner layer, the zona pellucida, is comprised of a jellylike coating made of protein and sugar. Once released from the ovary, the egg is swept into the fallopian tube. It is receptive to fertilization for only about one day. The sperm must reach the egg during this time, usually in the fallopian tubes, or fertilization will be impossible.
During sexual intercourse, millions of sperm are deposited into the vagina. They travel through the cervix and uterus to the fallopian tubes. Sperm can live within a woman's body for up to three days. Each sperm contain three distinct parts, the head, mid-piece, and tail. Each of these parts has a distinct purpose. The head of the sperm is composed of the nucleus (containing the chromosomes), an acrosome cap (containing enzymes crucial in fertilization), and an outer membrane. The mid-piece contains energy-producing mitochondria, and the tail is the mechanism for movement. Despite the ingenious design, fewer than 1 percent of the sperm released in an ejaculation ever make it to the egg. Factors inhibiting the success of sperm include abnormal formation and premature death from exposure to acidic vaginal secretions. Sperm can also be blocked by excess mucus covering the cervix, or they may travel to the fallopian tube that does not contain the egg. Fortunately, only one sperm is required to fertilize the egg.
In order to fertilize an egg, sperm must undergo the poorly understood process of capacitation. Capacitation involves changes to the acrosome, triggered by the cervical mucus, to prepare it to release the enzymes necessary to break through the zona pellucida. Upon reaching the surface of the zona pellucida, the sperm releases enzymes to break through. Once through the zona pellucida, the head of the sperm fuses to the egg's membrane, the tail of the sperm stops moving, and the egg engulfs the contents of the sperm.
It is crucial that only one sperm enters the egg. If an extra sperm passes through, a lethal condition known as polyspermy (many sperm) will occur. On the rare occasion this occurs, the fetus will be miscarried as a result of the extra set of chromosomes. To prevent this in most instances, a substance is released from the egg that changes the zona pellucida once it has been penetrated, blocking entry of any other sperm. Sperm penetration triggers the completion of the second meiotic division in the egg. With this division, the chromosomes of the sperm and egg come together in their own nucleus. The cell now officially becomes a zygote, the first cell of a new individual.
Additional topics
Medicine EncyclopediaGenetics in Medicine - Part 2Fertilization - Gametes, Ovulation And Ejaculation, Variations