Cloning Organisms
The Myth Of The Perfect Clone
Cloned animals are not 100 percent identical to their "parents." Whenever nuclear transplantation is used to produce cloned organisms, the offspring display some differences from the organism that donated the nuclei. The egg donor contributes mitochondria, the energy producers of eukaryotic cells, and these mitochondria have their own small amount of DNA-containing genes used for energy metabolism. Since mitochondria are inherited only with egg cytoplasm, they will not match the mitochondria of the animal from which the nucleus was taken. In addition, maternally derived gene products, both mRNA (messenger RNA) and protein, which serve to begin embryonic development, will differ from that of the nuclear donor, as will the uterine environment and the external environment. Thus, for example, clones produced by nuclear transplantation will be significantly less identical than will clones produced by twinning.
SEE ALSO CLONING: ETHICAL ISSUES; CLONING GENES; CONSERVATION BIOLOGY: GENETIC APPROACHES; HEMOPHILIA; MITOCHONDRIAL GENOME; REPRODUCTIVE TECHNOLOGY; TELOMERE; TRANSGENIC ANIMALS; TWINS.
Elizabeth A. De Stasio
Bibliography
Gurdon, J. B., and Alan Colman. "The Future of Cloning." Nature 402 (1999): 743.
Lanza, Robert P., Betsy L. Dresser, and Philip Damiani. "Cloning Noah's Ark." Scientific American (Nov., 2000): 84-89.
Wilmut, Ian. "Cloning for Medicine." Scientific American (Dec., 1998): 58-63.
Wilmut, Ian, Keith Campbell, and Colin Tudge. The Second Creation: Dolly and the Age of Biological Control. Cambridge, MA: Harvard University Press, 2000.
Additional topics
Medicine EncyclopediaGenetics in Medicine - Part 1Cloning Organisms - The History Of Cloning, Cloning Amphibians, Cloning Of Mammals: Dolly, Problems With Cloning