2 minute read

Bioremediation

Natural Plant Bioremediators



For many millions of years, plants have adapted to the presence of various metals in varying amounts in soils. Some metals, such as zinc, nickel, cobalt, and copper, function as nutrients when eaten by humans in small amounts, but are toxic when consumed in excess. Heavy metals that are toxic even in trace amounts include mercury, lead, cadmium, silver, gold and chromium. Human activities such as mining, municipal waste disposal, and manufacturing have increased heavy metal pollution to dangerous levels in some areas. These chemicals cause oxidative damage, which destroys lipids, DNA, and proteins.



Certain plants, called hyperaccumulators, cope with excess heavy metals in the environment by taking them in and sequestering them in vacuoles, which are bubble-like structures in their cells. Sometimes the plant combines a pollutant with another molecule, a process called chelation. Organic acids often serve this role. Citric acid, for example, surrounds and thereby detoxifies cadmium, and malic acid does the same for zinc. A class of polypeptides called phytochelatins can also bind metals and escort them to vacuoles. Yet a third strategy that plants use to control metal accumulation is to employ a class of small, metal-binding proteins called metal-lothioneins. The intentional use of plants that use any of these ways to take heavy metals from soil is termed phytoremediation. It is a form of bioremediation.

This petroleum-contaminated dirt was mixed with clean dirt and manure before being injected with microbes. The microbes fed on the petroleum's hydrocarbons, converting the harmful materials into carbon dioxide and oxygen.

Natural phytoremediators can be amazing. Consider Sebertia acuminata, a tree that lives in the tropical rain forest of New Caledonia, near Australia. Up to 20 percent of the tree's dry weight is nickel. If slashed, the bark oozes a bright green. This plant can perhaps be used to clean up nickel-contaminated soil. Soybeans also preferentially take up nickel from soil. Another phytore-mediator is Astragalus, also know as locoweed. It accumulates selenium from soil to counteract toxic effects of phosphorus, which tends to be abundant in selenium-rich soils. Cattle that munch on locoweed stagger about from selenium intoxication. Some plants act as sponges for metals in their environment. For example, plants that grow near gold mines assimilate gold into their tissues, apparently without harm. Prospectors use the gold content of such plants to locate deposits of the precious metal. Plants that grow near highways take up lead from gasoline exhaust. Near nuclear test sites, plants absorb radioactive strontium.

Additional topics

Medicine EncyclopediaGenetics in Medicine - Part 1Bioremediation - Natural Microbial Bioremediators, Natural Plant Bioremediators, Genetically Modified Bioremediators